ОСНОВИ ОХОРОНИ ПРАЦІ. Лекція 6.
- tdushko
- 22 янв. 2022 г.
- 15 мин. чтения

Тема 8 (Продовження теми) - Електробезпека. Специфіка питань електробезпеки відповідно до галузі. Статична електрика. Блискавкозахист.
Технічні засоби безпечної експлуатації електроустановок при нормальних режимах роботи. Технічні засоби безпечної експлуатації електроустановок при переході напруги на нормально неструмопровідні частини електрообладнання.
Заземлення, занулення, автомати струмового захисту та пристрої захисного відключення в трифазних та однофазних електромережах.
Система електрозахисних засобів, їх класифікація за видами і рівнем захисту. Комплектування електроустановок електрозахисними засобами.
Специфіка питань електробезпеки відповідно до галузі.
Методи захисту від статичної електрики. Блискавкозахист.
Література: осн. Л-5 (Розділ 3.).
Завдання на СРС: Організація безпечної експлуатації електроустановок. Вимоги до працівників. Навчання та інструктажі з електробезпеки. Кваліфікаційні групи з електробезпеки. Допуск до роботи. Нагляд за безпечним виконанням робіт. Відповідальність за безпечне виконання робіт. Правила застосування електрозахисних засобів. Випробування.
Технічні засоби безпечної експлуатації електроустановок
Технічні способи та засоби захисту
Технічні способи та засоби захисту (ТСЗЗ) підрозділяються на :
- ТСЗЗ при нормальних режимах роботи електроустановок (ізоляція струмопровідних частин, недосяжність неізольованих струмопровідних частин, попереджувальна сигналізація, мала напруга, електричний поділ мереж, вирівнювання потенціалів);
- ТСЗЗ при переході напруги на нормально неструмопровідні частини електроустановок (захисні заземлення, занулення, вимикання);
- Електрозахисні засоби та запобіжні пристосування.
Технічні способи та засоби захисту при нормальних режимах роботи електроустановок
Ізоляція струмопровідних частин забезпечується шляхом покриття їх шаром діелектрика для захисту людини від випадкового доторкання до частин електроустановок, через які проходить струм. Розрізняють робочу, додаткову, подвійну та посилену ізоляцію.
Робочою називається ізоляція струмопровідних частин електроустановки, яка забезпечує її нормальну роботу та захист від ураження струмом.
Додатковою називається ізоляція, яка застосовується додатково до робочої і у випадку її пошкодження забезпечує захист людини від ураження струмом.
Подвійною називається ізоляція, яка складається з робочої та додаткової.
Посиленою називається покращена робоча ізоляція.
Механічні пошкодження, волога, перегрівання, хімічні впливи зменшують захисні властивості ізоляції. Навіть у нормальних умовах ізоляція поступово втрачає свої початкові властивості, „старіє”. Тому необхідно систематично проводити профілактичні огляди та випробування ізоляції. У приміщеннях з підвищеною небезпекою та в особливо небезпечних, відповідно не рідше одного разу в два роки та в півріччя, перевіряють шляхом вимірювання відповідність опору ізоляції до норм. Для мереж напругою до 1000 В опір ізоляції струмопровідних частин повинен бути не меншим ніж 0,5 МОм.
Забезпечення недосяжності неізольованих струмопровідних частин передбачає застосування захисних огорож, блокувальних пристроїв та розташування неізольованих струмопровідних частин на недосяжній висоті чи в недосяжному місці.
Захисні огорожі можуть бути суцільними та сітчастими. Суцільні огорожі (корпуси, кожухи, кришки і т.п.) застосовуються в електроустановках напругою до 1000 В, а сітчасті – до і вище 1000 В. Захисні дверцята чи двері повинні закриватись на замок або обладнуватись блокувальними пристроями.
Блокувальні пристрої за принципом дії поділяються на механічні, електричні та електронні. Вони забезпечують зняття напруги із струмопровідних частин при відкриванні огорожі та спробі проникнути в небезпечну зону.
Розташування неізольованих струмопровідних частин на недосяжній висоті чи в недосяжному місці забезпечує безпеку без захисних огорож та блокувальних пристроїв. Вибираючи необхідну висоту підвісу проводів під напругою враховують можливість випадкового доторкання до них довгих струмопровідних елементів, інструменту чи транспорту. Так висота підвісу проводів повітряних ліній електропередач відносно землі при лінійній напрузі до 1000 В повинна бути не меншою ніж 6 м.
Попереджувальна сигналізація є пасивним засобом захисту, який не усуває небезпеки ураження, а лише інформує про її наявність. Така сигналізація може бути світловою (лампочки, світло діоди і т.п.) та звуковою (зумери, дзвінки, сирени).
Мала напруга застосовується для зменшення небезпеки ураження електричним струмом. До малих напруг належать номінальні напруги, що не перевищують 42 В. При таких напругах струм, що може пройти через тіло людини є дуже малим і вважається відносно безпечним. Однак, гарантувати абсолютної безпеки неможливо, тому поряд з малою напругою використовують й інші способи та засоби захисту.
Малі напруги застосовують у приміщеннях з підвищеною небезпекою (напруга до 36 В включно) та в особливо небезпечних приміщеннях (напруга до 12 В включно) для живлення ручних електрифікованих інструментів, переносних світильників, для місцевого освітлення на виробничому устаткуванні.
Джерелами такої напруги можуть слугувати батареї гальванічних елементів, акумулятори, трансформатори і т.п.
Застосування малих напруг суттєво зменшує небезпеку ураження електричним струмом, однак при цьому зростає значення робочого струму, а відтак і площа поперечного перерізу, що в свою чергу збільшує витрати кольорових металів. Крім того, при малих напругах істотно зростають втрати електроенергії в мережі, що обмежує їх протяжність. У силу вищеназваних обставин малі напруги мають обмежене використання.
Вирівнювання потенціалів є способом зниження напруг доторкання та кроку між точками електричного кола, до яких можливе одночасне доторкання людини, або на яких вона може одночасно стояти. Вирівнювання потенціалів досягається шляхом штучного підвищення потенціалу опорної поверхні ніг до рівня потенціалу струмопровідної частини, а також при контурному заземлені. Вертикальні заземлювачі в контурному заземлені (рис. 9) розміщуються як по контуру, так і в середині захищуваної зони і з’єднуються сталевими полосами. При замиканні струмопровідних частин на корпус, що приєднаний до такого контурного заземлення ділянки землі всередині контура набувають високих потенціалів, які наближаються до потенціалу заземлювачів. Завдяки цьому максимальні напруги доторкання Uдот та кроку Uк знижуються до допустимих значень.
Електричний поділ мереж передбачає поділ електромережі на окремі, електрично не з’єднані між собою, ділянки за допомогою роздільних трансформаторів РТ з коефіцієнтом трансформації 1:1 (рис. 10). Якщо єдину, сильно розгалужену мережу з великою ємністю та малим опором ізоляції, поділити на низку невеликих мереж такої ж напруги, які мають незначну ємність та високий опір ізоляції, то при цьому різко зменшується небезпека ураження людини струмом.
Технічні способи та засоби захисту при переході напруг на нормально неструмопровідні частини електроустановок
Захисне заземлення застосовують у мережах з напругою до 1000 В з ізольованою нейтраллю та в мережах напругою вище 1000 В з будь-яким режимом нейтралі джерела живлення .
Захисне заземлення – це навмисне електричне з’єднання із землею або з її еквівалентом металевих нормально не струмопровідних частин, які можуть опинитися під напругою. Призначення захисного заземлення полягає в тому, щоб у випадку появи напруги на металевих конструктивних частинах електроустаткування забезпечити захист людини від ураження електричним струмом при її доторканні до таких частин.
Принцип дії захисного заземлення в мережах з ізольованою нейтраллю полягає в зменшені до безпечних значень напруги доторкання та кроку, зумовлених замиканням на корпус. Це досягається зменшенням потенціалу на корпусі заземленого устаткування, а також вирівнюванням потенціалів, тобто підвищенням потенціалу основи до потенціалу заземленого устаткування.
В електроустановках напругою вище 1000 В з ефективно заземленою нейтраллю замикання на корпус завдяки наявності захисного заземлення перетворюється на коротке замикання. При цьому спрацьовує максимальний струмів захист і пошкоджена ділянка електроустановки вимикається.
Якщо корпус устаткування є незаземленим і відбулося замикання нього однієї із фаз, то доторкання до такого корпуса рівнозначно доторканню до фази. Якщо ж корпус електрично з’єднаний із землею, то він опиниться під напругою замикання , а людина, яка доторкається до такого корпуса, згідно з формулою 16 потрапляє під напругу доторкання .
Заземлювальним пристроєм називають сукупність конструктивно об’єднаних заземлювальних провідників та заземлювача. Заземлювач – провідник або сукупність електрично з’єднаних провідників, які перебувають у контакті із землею, або її еквівалентом. Заземлювачі бувають природні та штучні. Як природні заземлювачі використовують електропровідні частини будівельних і виробничих конструкцій, а також комунікацій, які мають надійний контакт із землею (водогінні та каналізаційні трубопроводи, фундаменти будівель і т.п.). Для штучних заземлювачів використовують сталеві труби діаметром 35 – 50 мм (товщина стінок не менше 3,5 мм) та кутники (40×40 та 60×60 мм) довжиною 2,5 – 3,0 м, а також сталеві прути діаметром не менше ніж 10 мм та довжиною до 10 м. В більшості випадків штучні вертикальні заземлювачі знаходяться у землі на глибині h = 0,5 – 0,8 м (рис. 12). Вертикальні заземлювачі з’єднують між собою штабою з поперечним перерізом не менше ніж 4×12 мм або прутком з діаметром не менше ніж 6 мм за допомогою зварювання. Приєднання заземлювального провідника до корпуса устаткування здійснюється зваркою або болтами.
Об’єкти, що підлягають заземленню приєднуються до магістралі заземлення виключно паралельно за допомогою окремого провідника .
Залежно від розташування заземлювачів стосовно устаткування, що підлягає заземленню, розрізняють виносне (зосереджене) та контурне (розподілене) заземлення. Перевага виносного заземлення полягає в тому, що можна вибрати місце розташування заземлювачів з найменшим опором грунту (землі). Заземлювачі контурного заземлення розташовують безпосередньо біля периметра (контура) дільниці, на якій знаходиться заземлювальне устаткування. Це дозволяє вирівняти потенціали всередині контура, а відтак – знизити напругу доторкання та кроку. Тому більш ефективним з точки зору електробезпеки є контурне заземлення.
Правила улаштування електроустановок (ПУЕ) обмежують найбільші опори заземлення:
• для електроустановок напругою до 1000 В:
- при сумарній потужності генераторів або трансформаторів в мережі живлення не більше 100кВт або 100 кВА – 10 Ом;
- в інших випадках – 4 Ом;
• для електроустановок напругою вище 1000 В:
- при ефективно заземленій нейтралі мережі живлення (напругах 110 кВ та вище і великих струмах замикання на землю) – 0,5 Ом;
- при ізольованій нейтралі мережі живлення (напругах до 35 кВ включно) та умові, що заземлювач використовується тільки для електроустановок напругою вище 1000 В – ≤ 10 Ом;
- те ж саме, але при умові, що заземлювач використовується одночасно для електроустановок напругою до 1000 В – ; при цьому приймається найменший розрахунковий опір або потрібний для електроустановок напругою до 1000 В.
Відповідно до ПУЕ захисне заземлення належить виконувати:
§ при напрузі змінного струму 380 В і вище та 440 В і вище для постійного струму – у всіх електроустановках;
§ при номінальних напругах змінного струму вище 42 В та постійного струму вище 110 В – лише в електроустановках, що знаходяться в приміщеннях з підвищеною небезпекою, особливо небезпечних, а також у зовнішніх електроустановках;
§ при будь-якій напрузі змінного та постійного струму – у вибухонебезпечних установках.
В процесі експлуатації електроустановок можливе порушення цілісності заземлювальних провідників та підвищення опору заземлення вище норми. Тому ПУЕ передбачено проведення візуального контролю (огляду) цілісності заземлювальних провідників та вимірювання опору заземлення. Такі вимірювання проводять, як правило, при найменшій провідності грунту: літом – при найбільшому висиханні чи зимою – при найбільшому промерзанні грунту. Вимірювання опору заземлення належить проводити після монтажу електроустановки, після її ремонту чи реконструкції, а також не рідше одного разу на рік.
Занулення. Заземлення корпусів електрообладнання, що споживає електроенергію від мережі напругою до 1000 В з глухозаземленою нейтраллю джерела, неефективне, бо при замиканні фази на корпус напруга на ньому відносно землі досягає значення більшого чи рівного половині фазного, а струм замикання на землю недостатній для спрацьовування максимального струмового захисту. Тому в таких мережах застосовується занулення корпусів електроустаткування.
Занулення – це навмисне електричне з’єднання з нульовим захисним провідником металевих нормально неструмопровідних частин, які можуть опинитися під напругою.
Нульовий захисний провідник – це провідник, який з’єднує частини, що підлягають зануленню, з глухозаземленою нейтральною точкою обмотки джерела струму або її еквівалентом.
Принцип дії занулення полягає в перетворені замикання фази на корпус в однофазне коротке замикання, тобто замикання між фазним і нульовим провідниками, з метою одержання великого струму, здатного забезпечити спрацьовування максимального струмового захисту. Внаслідок цього електроустановка автоматично вимикається апаратом захисту від струмів короткого замикання. Сила цього струму обумовлюється фазною напругою та повним опором ланцюга короткого замикання (петля фаза – нуль) .
Таким чином, повторне заземлення нульового провідника в період замикання фази на корпус знижує напругу доторкання до зануленого електрообладнання як при справній схемі, так і у випадку обриву нульового провідника.
До схеми занулення ПУЕ пред’являють такі вимоги:
1. струм однофазного короткого замикання повинен перевищувати не менш ніж в 3 рази номінальний струм плавкої вставки або струм спрацьовування розщіплювача автоматичного вимикача із зворотною залежною характеристикою. При захисті мережі автоматичними вимикачами, які мають тільки електромагнітний розщіплювач, кратність струму приймається 1,1; при відсутності заводських даних коефіцієнт приймається 1,4 для автоматів з номінальним струмом до 100 А, для інших – 1,25.
2. повна провідність нульового провідника у всіх випадках повинна бути не менше 50% провідності фазного провідника.
3. щоб забезпечити безперервність кола занулення, забороняється встановлення в нульовий провідник запобіжників та вимикачів. Виняток допускається тільки в тому випадку, коли вимикач разом із нульовим провідником розмикає й усі фазні провідники.
4. опір заземлюючого пристрою, до якого приєднуються нейтралі джерел живлення (робоче заземлення R0), не може перевищувати значень, які наведені в табл. 5. ці опори повинні забезпечуватись з урахуванням використання природних заземлювачів, а також заземлювачів повторних заземлень нульового провідника повітряних ліній електропередачі до напругою 1000 В при кількості ліній, що відходять, не менше двох.
5. Повторне заземлення нульового провідника повинне виконуватись на кінцях повітряних ліній або відгалужень довжиною більше 200 м, а також на вводах повітряних ліній у приміщення, електроустановки яких підлягають зануленню.
6. загальний опір заземлюючих пристроїв всіх повторних заземлень нульового провідника і кожного повторного заземлення не повинен перевищувати значень, наведених в табл. 5.
Слід зазначити, що одночасне заземлення та занулення корпусів електроустановок значно підвищує їх електробезпеку.
Захисне вимикання застосовується, як основний або додатковий засіб, якщо безпека не може бути забезпечена шляхом влаштування заземлення, або іншими способами захисту.
Захисне вимикання – це швидкодіючий захист, який забезпечує автоматичне вимкнення електроустановки (не більше ніж 0,2 с) при виникненні в ній небезпеки ураження струмом.
Існує багато схем захисного вимикання.
Електрозахисні засоби та запобіжні пристосування
Електрозахисними засобами називаються вироби, що переносяться та перевозяться і слугують для захисту людей, які працюють з електроустановками, від ураження електричним струмом, від дії електричної дуги та електромагнітного поля.
Залежно від призначення електрозахисні засоби підрозділяються на ізолюльвані, огороджувальні та запобіжні.
Ізолювальні електрозахисні засоби призначені для ізоляції людини від частин електроустановок, що знаходяться під напругою та від землі, якщо людина одночасно доторкається до землі чи заземлених частин електроустановок та струмопровідних частин чи металевих конструктивних елементів (корпусів), які опинилися під напругою.
Розрізняють основні та додаткові електрозахисні засоби. До основних належать такі електрозахисні засоби, ізоляція яких протягом тривалого часу витримує робочу напругу електроустановки, і тому ними дозволяється доторкатись до струмопровідних частин, що знаходяться під напругою:
- при роботах у електроустановках з напругою до 1000 В – діелектричні рукавички, ізолювальні штанги, інструменти з ізольованими ручками, струмовимірювальні кліщі;
- при роботах в електроустановках з напругою вище 1000 В – ізолювальні штанги, струмовимірювальні та ізолювальні кліщі, покажчики напруги.
Додаткові ізолювальні захисні засоби мають недостатні ізолювальні властивості, тому призначені лише для підсилення захисної дії основних засобів, разом з якими вони і застосовуються. До них належать:
- при роботах у електроустановках з напругою до 1000 В – діелектричні калоші, килимки, ізолювальні підставки;
- при роботах в електроустановках з напругою вище 1000 В – діелектричні рукавички, боти, килимки, ізолювальні підставки.
Огороджувальні електрозахисні засоби призначені для тимчасового огороджування струмопровідних частин (щити, бар’єри, переносні огорожі), а також для заземлення вимкнутих струмопровідних частин з метою запобігання ураження струмом при випадковій появі напруги (тимчасове заземлення).
Запобіжні електрозахисні засоби та пристосування призначені для захисту персоналу від випадкового падіння з висоти (запобіжні пояси); для забезпечення безпечного піднімання на висоту (драбини, „кігті”), для захисту від світлової, теплової, механічної дії електричної дуги (захисні окуляри, щитки, спецодяг, рукавички тощо).
Організаційні та технічні заходи електробезпеки
До роботи на електроустановках допускаються особи не молодші 18 років, які пройшли інструктаж та навчання з безпечних методів праці, перевірку знань правил безпеки та інструкцій відповідно до займаної посади та кваліфікаційної групи з електробезпеки, і які не мають проти показів, визначених Міністерством охорони здоров’я України.
Для забезпечення безпеки робіт у діючих електроустановках належить виконувати наступні організаційні заходи:
- призначення осіб, які відповідають за організацію та проведення робіт;
- оформлення наряду чи розпорядження на проведення робіт;
- організація нагляду за проведенням робіт;
- оформлення закінчення робіт, перерв у роботі, переведення на інші робочі місця.
До технічних заходів, які необхідно виконувати в діючих електроустановках для забезпечення безпеки робіт належать:
1. при проведенні робіт зі зняттям напруги в діючих електроустановках чи поблизу них:
- вимкнення установки (частини установки) від джерела живлення електроенергії;
- механічне блокування приводів апаратів, які здійснюють вимкнення, зняття запобіжників, від’єднання кінців лінії, яка здійснює електропостачання та інші заходи, що унеможливлюють випадкову подачу напруги до місця проведення робіт;
- встановлення знаків безпеки та захисних огорож біля струмопровідних частин, що залишаються під напругою і до яких в процесів роботи можливе доторкання або наближення на недопустиму відстань;
- встановлення заземлення (ввімкнення заземлювальних ножів чи встановлення переносних заземлень);
- огородження робочого місця та вивішування плакатів безпеки;
2. при проведенні робіт на струмопровідних частинах, які знаходяться під напругою та поблизу них:
- виконання робіт за нарядом не менш ніж двома працівниками зі застосуванням електрозахисних засобів, під постійним наглядом, із забезпеченням безпечного розташування працівників, використовуваних механізмів та пристосувань.
Захист від статичної електрики
Статична електрика – це сукупність явищ, що пов’язані з виникненням, накопиченням та релаксацією вільного електричного заряду на поверхні або в об’ємі діелектричних та напівпровідникових речовин, матеріалів та виробів. Виникнення зарядів статичної електрики є результатом складних процесів перерозподілу електронів чи іонів при стиканні двох різнорідних тіл (речовин).
Порушення поверхневого контакту при терті тіл призводить до електризації - виникнення електричних зарядів, які можуть утримуватись на поверхні цих тіл протягом тривалого часу. Такі заряди, на відміну від рухомих зарядів динамічної електрики (електричний струм) знаходяться у статичному стані.
Електричні заряди виникають:
- при терті діелектричних тіл один об одного або об метал (наприклад, пасові передачі);
- при переливанні, перекачуванні, перевезенні в ємностях горючих та легкозаймистих рідин;
- при транспортуванні горючих газів трубопроводом;
- при подрібненні діелектриків;
- при переміщенні сухого запиленого повітря зі швидкістю понад 15 – 20 м/с і т.п.
За сприятливих умов, наприклад, при низькій вологості повітря статичні заряди не лише утворюються, а й накопичуються. Коли в результаті такого накопичення вони набудуть високого потенціалу, то може виникнути швидкий іскровий розряд між частинами устаткування або розряд на землю. Такий іскровий розряд при наявності горючих сумішей може спричинити вибух чи пожежу. В цьому і полягає основна небезпека статичної електрики.
Заряди статичної електрики можуть утворюватись чи передаватись (контактним або індукційним шляхом) тілу людини. Якщо виникнуть іскрові розряди, то вони викликають фізіологічну дію у вигляді уколу чи незначного поштовху, які самі по собі не являють небезпеки для людини (сила струму розряду дуже мала). Однак, враховуючи неочікуваність такого розряду, у людини може виникнути переляк, внаслідок якого може відбутись рефлекторний рух, що в низці випадків призводить до травмування (робота на висоті, біля рухомих незахищених частин устаткування тощо).
Систематичний вплив електростатичного поля підвищеної напруженості негативно впливає на організм людини, викликаючи, в першу чергу, функціональні розлади центральної нервової та серце-судинної систем. Відповідно до ГОСТ 12.1.045-84 гранично допустима напруженість електричного поля Едоп на робочих місцях не повинна перевищувати 60 кВ/м, якщо час впливу tв не перевищує 1 год; при 1 год < tв < 9 год – .
Захист від статичної електрики та її небезпечних проявів досягається трьома основними способами:
1. запобіганням виникнення та накопичення статичної електрики,
2. прискоренням стікання електростатичних зарядів,
3. нейтралізацією електростатичних зарядів.
Запобігти виникненню статичної електрики чи зменшити її величину можна заміною небезпечної технології, зменшенням швидкості руху речовини по трубопроводу, виготовленням поверхонь, що труться, з однорідних матеріалів.
Прискоренню стікання зарядів сприяє заземлення устаткування, збільшення електропровідності матеріалів шляхом нанесення на їх поверхню антистатичних добавок чи присадок, підвищення відносної вологості повітря.
Нейтралізація зарядів статичної електрики здійснюється внаслідок іонізації повітря індукційними, високовольтними, радіоактивними та комбінованими нейтралізаторами.
Блискавкозахист.
Блискавкозахист — це система захисних пристроїв та заходів, що призначені для забезпечення безпеки людей, збереження будівель та споруд, устаткування та матеріалів від можливих вибухів, займань та руйнувань, спричинених блискавкою.
Блискавка — особливий вид проходження електричного струму через величезні повітряні прошарки, джерелом якого є атмосферний заряд, накопичений грозовою хмарою. Умови утворення таких хмар — велика вологість та швидка зміна температури повітря. За таких умов у атмосфері Землі проходять складні фізичні процеси, які призводять до утворення та накопичення електричних зарядів. При підвищенні напруженості електричного поля до критичних значень виникає розряд, який супроводжується яскравим свіченням (блискавкою) та звуком (громом). Довжина каналу блискавки може досягати кількох кілометрів, сила струму — 200 000 А, напруга— 150 000 кВ, а температура — 10000 °С і більше. Час існування блискавки 0,1 — 1 с Щосекунди земну кулю уражають в середньому більше 100 блискавок.
Розрізняють первинні (прямий удар) і вторинні прояви блискавки.
Прямий удар блискавки (ураження блискавкою) — безпосередній контакт каналу блискавки з будівлею чи спорудою, що супроводжується протіканням через неї струму блискавки. Прямий удар блискавки здійснює на уражений об'єкт наступні дії: електричну, що пов'язана з ураженням людей і тварин електричним струмом та виникненням перенапруг на елементах, по яких струм відводиться в землю; теплову, що зумовлена значним виділенням теплоти на шляхах проходження струму блискавки через об'єкт; механічну, що спричинена ударною хвилею, яка поширюється від каналу блискавки, а також електродинамічними силами, що виникають у конструкціях, через які проходить струм блискавки.
Під вторинними проявами блискавки розуміють явища під час близьких розрядів блискавки, що супроводжуються появою потенціалів на конструкціях, трубопроводах, електропроводах всередині будівель і споруд, які не зазнали прямого удару блискавки. Вони виникають внаслідок електростатичної та електромагнітної індукції.
Електростатична індукція проявляється у наведені потенціалів на металевих елементах конструкції, в незамкнутих металевих контурах, що може викликати іскріння всередині будівель та споруд і тим самим ініціювати пожежу чи вибух.
Електромагнітна індукція супроводжуються появою в просторі змінного магнітного поля, яке індукує в металевих контурах, що утворені із різних протяжних комунікацій (трубопроводів, електропроводів і т. п.) електрорушійну силу (ЕРС).
У замкнутих контурах ЕРС призводить до появи наведених струмів. У контурах, в яких контакти недостатньо надійні в місцях з'єднання, такі струми можуть викликати іскріння або сильне нагрівання, що дуже небезпечно для приміщень, де утворюються вибухо- та (або) пожежонебезпечні концентрації.
Ще однією особливістю вторинного прояву блискавки є занесення високих потенціалів у будівлю по металоконструкціях, які підведені в цю будівлю (трубопроводах, рейкових шляхах, естакадах, проводах ліній електропередач і т. п.). Такі занесення супроводжуються електричними розрядами, які можуть стати джерелом вибуху чи пожежі.
Захист об'єктів від прямих ударів блискавки забезпечується шляхом встановлення блискавковідводів. Захист від електростатичної індукції (вторинний прояв блискавки) здійснюється приєднанням устаткування до заземлювача для відведення електростатичних зарядів, індукованих блискавкою, в землю. Захист від електромагнітної індукції полягає у встановленні методом зварювання перемичок між протяжними металоконструкціями в місцях їхнього зближення менше ніж на 10 см.. Інтервал між перемичками повинен становити не більше 20 м. Це дає змогу наведеному струму блискавки переходити з одного контуру в інший без утворення електричних розрядів. Захист від занесення високих потенціалів у будівлю здійснюється шляхом приєднання до заземлювача металоконструкцій перед їх введенням у будівлю.
Будівлі та споруди поділяються за рівнем блискавкозахисту на три категорії. Приналежність об'єкта, що підлягає блискавкозахисту, до тієї чи іншої категорії визначається головним чином його призначенням та класом вибухопожежонебезпечних зон згідно ПУЕ.
I категорія — будівлі та споруди або їх частини з вибухонебезпечними зонами класів В-І та В-ІІ. В них зберігаються чи знаходяться постійно або використовуються під час виробничого процесу легкозаймисті та горючі речовини, що здатні утворювати газо-, пило-, пароповітряні суміші, для вибуху яких достатньо невеликого електричного розряду (іскри).
II категорія — будівлі та споруди або їх частини, в яких наявні вибухонебезпечні зони В-Іа, В-Іб, В-ІІа. Вибухонебезпечні газо-, пило-, пароповітряні суміші в них можуть з'явитися лише при аварії чи порушенні установленого технологічного процесу. До цієї ж категорії належать зовнішні установки класу В-Іг та склади, у яких зберігаються вибухонебезпечні матеріали, легкозаймисті та горючі рідини.
III категорія — ціла низка будівель та споруд, зокрема: будівлі та споруди з пожежонебезпечними зонами класів П-І, П-ІІ та П-ІІа; зовнішні технологічні установки, відкриті склади горючих речовин, що належать до зон класів П-ІП; димові та інші труби підприємств і котельних, башти та вишки різного призначення висотою 15 м і більше.
Об'єкти І та II категорій необхідно захищати як від прямих ударів блискавки, так і від вторинних її проявів. Будівлі та споруди III категорії повинні мати захист від прямих ударів блискавки та занесення високих потенціалів, а зовнішні установки — тільки від прямих ударів.
При виборі пристроїв блискавкозахисту за категоріями враховують важливість об'єкта, його висоту, місце розташування серед сусідніх об'єктів, рельєф місцевості, інтенсивність грозової діяльності. Останній параметр характеризується середньорічною тривалістю гроз у годинах для даної місцевості .
Для захисту об'єкта від прямих ударів блискавки застосовують блискавковідвід — пристрій, який височіє над захищуваним об'єктом, сприймає удар блискавки та відводить її струм у землю. Захисна дія блискавковідводу базується на властивості блискавки уражати найбільш високі та добре заземлені металеві конструкції. За конструктивним виконанням блискавковідводи поділяються на стержневі, тросові та сітчасті, а за кількістю та загальною площею захисту — на одинарні, подвійні та багатократні. Окрім того, розрізняють блискавковідводи встановлені окремо та такі, що розташовані на захищуваному об'єкті. Будь-який блискавковідвід складається з блискавкоприймача 1 (металевий стержень, трос, сітка), який безпосередньо сприймає удар блискавки; несівної опори 2 (спеціальні стовпи, елементи конструкцій будівлі), на якій розташовується блискавкоприймач; струмовідводу 3 (металевий провідник, конструкція), по якому струм блискавки передається в землю; заземлювача 4, який забезпечує розтікання струму блискавки в землі.
Блискавковідвід характеризується зоною захисту — частиною простору, навколо блискавковідводу, яка захищена від прямих ударів блискавки з відповідним ступенем надійності. За величиною ступеня надійності зони захисту можуть бути двох типів: зона А — ступінь надійності не менше 99,5%, зона Б — не менше 95%.
Для одинарного стержневого блискавковідводу висотою h≤ 150 м зона захисту являє собою конус з вершиною на висоті h0< h. На рівні землі зона захисту утворює коло радіусом r0, а горизонтальний переріз зони на висоті hxутворює коло радіусом rх . Співвідношення розмірів зони захисту типу А та типу Б наведені нижче (РД 34.21.122-87).
Comments